翻訳と辞書
Words near each other
・ Bowker
・ Bowker Overpass
・ Bowker Place
・ Bowker Vale Metrolink station
・ Bowker's Law Books and Serials in Print
・ Bowker-Saur
・ Bowkeria
・ Bowkett v Action Finance Ltd
・ Bowknot Lake
・ Bowl
・ Bowl (disambiguation)
・ Bowl (smoking)
・ Bowl Alliance
・ Bowers v. Hardwick
・ Bowers v. Kerbaugh-Empire Co.
Bowers' operators
・ Bowers, Delaware
・ Bowers, Indiana
・ Bowers, Pennsylvania
・ Bowers, Staffordshire
・ Bowers, Wisconsin
・ Bowers-Felts House
・ Bowers-Livingston-Osborn House
・ Bowers-Tripp House
・ Bowershall
・ Bowersox
・ Bowerston, Ohio
・ Bowerstown, Indiana
・ Bowersville
・ Bowersville, Georgia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bowers' operators : ウィキペディア英語版
Bowers' operators

Let a\b = H_n(a,b), the hyperoperation.
Invented by Jonathan Bowers, the first operator is \ and it's defined:
m\1 = m
m\2 = m\m
m\3 = m\m
m\4 = m\m\}m

The number inside the brackets can change. If it's two
m\1 = m
m\2 = m\(m\1)
m\3 = m\(m\2)
m\4 = m\(m\3)

Operators beyond \ can also be made, the rule of it is the same as hyperoperation:
m\n = m\(m\(n-1))
The next level of operators is \\}, it to \ behaves like \ is to \.
For every fixed positive integer q, there is an operator m\...\}\}n with q sets of brackets. The domain of (m, n, p) is (\mathbb^+)^3, and the codomain of the operator is \mathbb^+.
Another function \ means m\...\}\}n, where q is the number of sets of brackets. It satisfies that \ = \ for all integers m \ge 1, n \ge 2, p \ge 2, and q \ge 1. The domain of (m, n, p, q) is (\mathbb^+)^4, and the codomain of the operator is \mathbb^+.
Numbers like TREE(3) are unattainable with Bowers' operators, but Graham's number lies between 3\63 and 3\64.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bowers' operators」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.